博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
笔试算法题(58):二分查找树性能分析(Binary Search Tree Performance Analysis)
阅读量:6980 次
发布时间:2019-06-27

本文共 8581 字,大约阅读时间需要 28 分钟。

议题:二分查找树性能分析(Binary Search Tree Performance Analysis)

分析:

  • 二叉搜索树(Binary Search Tree,BST)是一颗典型的二叉树,同时任何节点的键值大于等于该节点左子树中的所有键值,小于等于该节点右子树中的所有键值,并且每个节点域中保存 一个记录以其为根节点的子树中所有节点个数的属性,这个属性可用于支持贪婪算法的实现;

  • 二叉搜索树的建立是在树的底部添加新的元素,搜索即从根元素开始到达树底部的一条路径,插入和搜索相似(注意对重复键的处理),排序按照节点访问方式不同有前序、中序、后序三种;

  • 二叉搜索树算法的运行时间取决于树的形状,最好情况下根节点与每个外部节点间有㏒N个节点,此时树完全平衡,最坏情况下搜索路径上有N个节点。由于创建二 叉搜索树的时候,第一个插入的元素总是作为根元素,所以元素插入的顺序决定树的形状。在随机情况下,极度平衡和极度不平衡的树都很少出现,所以这种情况下 二叉搜索树算法有着良好的运行情况;

  • 所以平均情况下,N个随机生成的BST树种,一次搜索,插入大约需要1.39㏒N此比较。如果键值不是随机出现,则二叉搜索树退化为N个节点的链表,一次操作为线性O(N)运行时间;

  • 使用BST树存储文件中每一个文本串,基于字符串的排序使得搜索变得容易;

  • BottomUp插入策略:按照前序策略遍历整个树结构,首先查看当前节点是否为NULL,然后与关键值比较查看是否为目标值,不是的话就分别针对左右子 树递归调用搜索算法,然后进入下一个结构,注意在递归调用之间的衔接是由返回一个节点来实现的,所以如果已经到达树底部,则返回一个新节点,这个节点正好 位于上一级的子树连接上,这样正好形成整个树结构;

  • TopDown插入策略:在BottomUp插入策略的基础上,将新插入的节点在递归回溯的时候逐层旋转,知道根节点的位置;使用基于递归插入操作和旋转 操作的策略可以使得最近插入的元素接近BST树的顶部,同时保持树的平衡性。这种插入方式称为从根部插入,实现策略:首先使用普通递归插入将在树底部找到 一个合适的位置插入新的节点,然后使用旋转操作将这个新加入的节点旋转到根节点处,不仅可以保持树的平衡,而且由于最近插入的项被使用的概率大,靠近根节 点则加速搜索效率;

  • 旋转操作:BST树中从根部插入新节点:首要考虑的就是是否能够保持BST树的性质。现在使用基于旋转(Rotation)的转换策略,使得BST树保持原有性质。旋转实质上是交换根节点和一个孩子的角色,同时保持各节点的顺序

     

  • 选择第Kth个值(最小或者最大):利用Node节点中的count标记(此标记说明以当前节点为根节点的子树的所有节点数),可以快速查找给定的序列中 第Kth个最小或者最大值;当然前提是将给定的序列扩建成BST;从根节点开始,首先检查其左子树中节点个数,如果正好为K个则返回根节点本身,如果大于 K个节点,则对左子树递归调用算法,如果小于K个节点,则说明第K个最小键在根节点的右子树中,变成查找右子树中第K-t-1个最小键的项(t为左子树所 有节点,1为根节点自身);

  • BST树的节点删除操作:被删除的节点可以有三种情况,没有子节点,有一个子节点,有两个子节点。第一种情况可直接删除;第二种情况需要临时存储子节点的 索引,并让被删除节点的父节点指向这个这个索引;第三种情况需要维护BST树的性质,所以一般性策略是选择右子树中最小的元素作为新的根节点(右子树中最 小的元素出现在最左边,所以它至多只有一个子节点,可容易删除),然而有时候也会选择左子树中的最大元素作为新的根节点(由于在左右子树中任意选择新的节 点作为新的根节点,所以可能造成BST树的不平衡);

样例:

1 struct Node {  2         int value;  3         int count;  4         Node *left;  5         Node *right;  6         Node(int v, int c=1, Node* l=NULL, Node* r=NULL):  7                                 count(c), value(v), left(l), right(r) {  8   9         } 10 }; 11 /** 12  * 对root节点进行右旋转操作,也就是: 13  * 1. 让root原来的左孩子变成newRoot; 14  * 2. 让root变成newRoot的右子节点; 15  * 3. 让root原来的左孩子的的右子节点变成root的左子节点 16  * */ 17 Node* rightRotate(Node *root) { 18         Node *newRoot=root->left; 19         root->left=root->left->right; 20         newRoot->right=root; 21         return newRoot; 22 } 23 /** 24  * 对root节点进行左旋转操作,也就是: 25  * 1. 让root原来的右孩子变成newRoot; 26  * 2. 让root变成newRoot的左子节点; 27  * 3. 让root原来的右孩子的左子节点变成root的右子节点 28  * */ 29 Node* leftRotate(Node *root) { 30         Node *newRoot=root->right; 31         root->right=root->right->left; 32         newRoot->left=root; 33         return newRoot; 34 } 35  36 Node* binaryTreeSearch(Node *root, int target) { 37  38         if(root==NULL) 39                 return NULL; 40  41         if(target>root->value) 42                 return binaryTreeSearch(root->right, target); 43         else if(target
value) 44 return binaryTreeSearch(root->left, target); 45 else 46 return root; 47 } 48 49 Node* binaryTreeInsert(Node *root, int target) { 50 51 if(root==NULL) { 52 return new Node(target); 53 } 54 55 if(target>root->value) 56 root->right=binaryTreeInsert(root->right, target); 57 else if(target
value) 58 root->left=binaryTreeInsert(root->left, target); 59 60 return root; 61 } 62 /** 63 * 这样可以将新插入的元素旋转到为root; 64 * 不仅可以保持BST的平衡性,而且可以保证 65 * 新插入的元素的最大访问延迟; 66 * */ 67 Node* binaryTreeInsertTopDown(Node *root, int target) { 68 69 if(root==NULL) { 70 return new Node(target); 71 } 72 73 if(target>root->value) { 74 root->right=binaryTreeInsert(root->right, target); 75 root=leftRotate(root); 76 } 77 else if(target
value) { 78 root->left=binaryTreeInsert(root->left, target); 79 root=rightRotate(root); 80 } 81 82 return root; 83 } 84 85 Node* binaryTreeInsertWithCount(Node *root, int target) { 86 87 if(root==NULL) { 88 return new Node(target); 89 } 90 91 if(target>root->value) 92 root->right=binaryTreeInsert(root->right, target); 93 else if(target
value) 94 root->left=binaryTreeInsert(root->left, target); 95 root->count++; 96 return root; 97 } 98 /** 99 * 从一个序列中选定第K大的数字,100 * */101 int binaryTreeSelect(Node *root, int k) {102 /**103 * 如果当前root为NULL,则选择失败104 * */105 if(root==NULL) {106 printf("\nfind nothing-_-\n");107 return -1;108 }109 /**110 * 如果root的左子节点为NULL111 * */112 if(root->left==NULL) {113 if(k==1)114 return root->value;115 return binaryTreeSelect(root->right, k-1);116 }117 /**118 * 如果root的左子节点不为NULL;119 * 1. 如果K<=leftCount,则Kth个节点在左子树中120 * 2. 如果K==leftCount+1,则kth个节点就是root自身121 * 3. 如果k>leftCount+1,则Kth个节点就是右子树中的k-1-leftCount个节点122 * */123 int leftCount=root->left->count;124 if(leftCount>=k)125 return binaryTreeSelect(root->left, k);126 else if(leftCount+1==k)127 return root->value;128 else129 return binaryTreeSelect(root->right, k-1-leftCount);130 }131 132 /**133 * 将指定的元素target旋转到根节点134 * */135 Node* binaryTreeRotate(Node *root, int target) {136 137 if(root==NULL)138 return NULL;139 140 if(target>root->value) {141 root->right=binaryTreeRotate(root->right,target);142 leftRotate(root);143 } else if(target
value) {144 root->left=binaryTreeRotate(root->left,target);145 rightRotate(root);146 }147 148 return root;149 }150 /**151 * 此方法寻找root的左子树中具有最大value的子节点,也就是最‘左边’的子节点;152 * */153 Node* subtreeRightMaximum(Node *root) {154 Node *cur=root;155 Node *pre;156 while(cur!=NULL) {157 pre=cur;158 cur=cur->left;159 }160 return pre;161 }162 /**163 * 此方法寻找root的右子树中具有最大value的子节点,也就是最‘左边’的子节点;164 * */165 Node* subTreeLeftMaximum(Node* root) {166 Node *cur=root;167 Node *pre;168 while(cur!=NULL) {169 pre=cur;170 cur=cur->right;171 }172 return pre;173 }174 175 Node* binaryTreeDelete(Node *root, int target) {176 177 if(root==NULL)178 return NULL;179 Node *temp;180 Node *newRoot;181 /**182 * 如果target比root->value大,则说明其位于root的183 * 右子树,则继续递归184 * 如果target比root->value小,则说明其位于root的185 * 左子树,则继续递归186 * 如果target等于root->value,则说明当前节点root187 * 就是需要删除的节点,然后分三种情况讨论:188 * 1. 如果root没有左右子节点189 * 2. 如果root只有左节点或者只有右节点190 * 3. 如果root德尔左右子节点都存在;191 * */192 if(target>root->value)193 root->right=binaryTreeDelete(root->right, target);194 else if(target
value)195 root->left=binaryTreeDelete(root->left, target);196 else {197 if(root->left==NULL && root->right) {198 delete root;199 return NULL;200 } else if(root->left==NULL) {201 temp=root->right;202 delete root;203 return temp;204 } else if(root->right==NULL) {205 temp=root->left;206 delete root;207 return temp;208 }209 /**210 * 左右子节点都存在的情况,需要从左右子树中寻找下一个根节点;211 * 这里是从右子树中选取最小的一个节点作为新的根节点;212 * */213 newRoot=subtreeRightMaximum(root->right);214 /**215 * 由于右子树中最小的节点必然至多只有一个右节点,所以其删除操作216 * 较为简单;然后将其的左右子树替换成当前的左右子树;217 * */218 newRoot=binaryTreeDelete(root->right, newRoot->value);219 newRoot->right=root->right;220 newRoot->left=root->left;221 delete root;222 }223 224 }

 

补充:

  • BST中搜索和插入的策略都是一样的,从传入的树节点开始,首先判断其是否为NULL,如果是的话对于搜索来讲表示失败,对于插入来讲表示需要插入新的节 点;如果不是NULL的话,对于搜索来讲比对是否为目标值,然后针对左右子树递归调用,对于插入来讲比对是否相同,表示树中已经有同样的节点算法说明;

  • BST树的构建和搜索也使用同样的遍历策略,所以插入与搜索一样容易实现;旋转可用于防止树变得不平衡,实现删除,合并和其他操作的辅助操作,BST树的 插入操作可以通过在树的底部插入新元素,然后使用左旋和右旋将新元素带到根节点处,防止树的不平衡状态。每次BST搜索命中的项也可以通过旋转带到根节点 处;

  • 使用BST树进行选择算法最大的缺点就是计数域的出现导致额外的内存占用,树结构改变时需要额外的维护操作,同时我们可以对查找到的节点元素使用旋转操作,将其放到根节点的位置,下次使用的时候就能很快定位;

 

BST树的性能特征总结:

  • 二叉搜索树算法的运行时间取决于树的形状,最好情况下树可能完全平衡,这样一次搜索过程就是一条路径的长度㏒N,最差情况下树退化为链表,这样一次搜索过程路径长度可能为N;

  • 使用插入操作构建BST树的过程中,越是前面的节点对树最终形状的影响越是大,第一个元素就是树根,对于随机序列来讲,最坏情况出现的概率很小,所以平均情况能保持较好的运行时间,㏒N;

  • 使用索引项来表示搜索节点,避免动态分配内存。当序列以随机序列插入时,生成完全平衡树的概率很小,但二叉树路径的长度和树的高度与BST的搜索开销联系 紧密。平均情况下一棵根据N个随机键生成的BST树中,搜索命中(插入和搜索失败)大约需要1.39㏒N次比较。最坏情况下,可能需要N此比较(也就是顺 序搜索);

转载于:https://www.cnblogs.com/leo-chen-2014/p/3762132.html

你可能感兴趣的文章
java.lang.ClassNotFoundException
查看>>
关于Console Application引用不到System.Web的问题
查看>>
调用百度翻译API接口功能
查看>>
表设置了自增后往里面插入不自增的id时的处理方法
查看>>
MySQL:MySQL日期数据类型、MySQL时间类型使用总结
查看>>
Proguard打包混淆报错:can't find superclass or interface
查看>>
2014美团笔试之寻找最短子串
查看>>
Open Flash Charts
查看>>
pycharm中不能安装bs4的解决方案
查看>>
我对编程语言选择的理解
查看>>
6.3、Android Studio的CPU Monitor
查看>>
【java】JDK1.8时间日期库 新特性 所有java中时间Date的使用
查看>>
Android 应用开发者必看的 9 个 Tips
查看>>
关于Fragment框架,说的够清晰了。。。
查看>>
批处理写的俄罗斯方块
查看>>
ubuntu下安装加装DNS
查看>>
线性回归——最小二乘法_实例(二)
查看>>
POJ2866:Who Gets the Most Candies?(线段树 + 反素数 + 约瑟夫环)
查看>>
微信支付开发(12) 认清微信支付v2和v3
查看>>
k8s学习笔记之三:k8s快速入门
查看>>